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ABSTRACT

In this thesis, we address three problems of the ¢ f-idf weighting, the hierarchical scoring and intra-class
key words in the image retrieval using very large dimensional Bag-of-Words (BoW) representation. The ¢f-
idf weighting method, which is a commonly used codebook weighting scheme, is usually understood to improve
retrieval performance however its degree is not too significant. Rather, it sometimes brings a problem of worsening
precision. The hierarchical scoring, which is commonly used in hierarchical codebook, the precision improvement
differs depending on the dataset as the number of levels that are considered in scoring gets larger. Intra-class key
words, which represent their class most well, have not taken into consideration in BoW representation based
image retrieval because of its too high dimensionality. Despite different classes have different key-word, only
a same weight or standard is applied to every image classes. To overcome these three different problems, we
suggest a new codewords weighting method preserving the independence model of BoWs representation that
codewords occur independently in one image. In the problems of ¢ f-idf weighting and the hierarchical scoring,
the proposed method only focuses on improving the algorithms without using any extra cue besides two types
of signature, document frequency used for ¢ f-idf weighting and the level for hierarchical scoring. Since the
document frequency and the level are related with inter-class discriminability, we define the two values as key-
signatures. In the problem of considering intra-class key words, the proposed method gives relevant weight to
codewords according to its statistical appearance within a class. Since an intra-class variance of frequencies of
a codeword is related with its intra-class importance, we define that kind of value as another key-signature. We
also define a function, called Weight Mapping Function (WMF), that maps a weight value from a key-signature.
In order to obtain optimal WMF shapes for each key-signature type, we learn the WMFs using randomly sampled
training data by means of optimization method. From the WMF of document frequency or level, we produce a
global weight vector for every classes, in the other hand, we produce intra-class weight vectors for each class
from the WMF of intra-class variance. We conducted experiments with UKbench and OXford5K dataset, and our
approach outperformed the tf-idf weighting and hierarchical scoring, without extra cue and additional computation
in on-line stage. The proposed intra-class weighting method also shows noticeable improvement on UKbench

dataset.
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Chapter 1. Introduction

Information retrieval has grown mainly with text retrieval, which finds desired information from the text
queries. We are now provided with tremendous amount of image data as multimedia technology has evolved and
the number of the users has increased drastically. Along with the development of technology to handle web-scale
data, technologies to effectively index or search not only text data but also image or video data have become
important. In the year of 2010, Facebook had stored over 260 billions images and one billion new images are
uploaded for a week, approximately 60 terabytes [44]. In other words, one million images were uploaded to
Facebook server per a second at peak. In addition to that, the demand to retrieve visual information by visual
query is increasing because it is hard to describe visual information by text. For this reason, image retrieval is
currently one of active and vibrant research topics in computer vision field.

The goal of image retrieval is to retrieve a set of images that have exactly the same object in a query image
from a given image database as shown in Figure[I.1] The retrieved images are expected to contain the same object
or scene with various transformations and time in which the images taken. It is, in a sense, same with image
classification or object detection in terms of recognizing which object exists in a query image. However, there are
obvious differences between image retrieval and the other as shown in Table[I.1] Image retrieval is different from
image classification problems in terms of output, the former gives a set of images containing the same objects of
a query, on the other hand the latter returns a class label of the query among pre-defined classes. Furthermore,
image retrieval system does not have pre-trained classifiers while image classification has. In an actual scenario
of image retrieval, object categories in the web image database are impossible to be defined since only duplicated
objects can be categorized into the same class. For this reason, an image retrieval system stores only image vectors
while an image classification system should store finite classifiers of pre-defined object classes. Likewise, image
retrieval is different from the object detection problem even though they have same goal in terms of detecting
the same objects. Object detection problem has pre-trained detectors to detect specified object categories such as
faces, cars, humans, et cetera. In short, image retrieval system does not have pre-trained classifiers or detectors
but an image database because its goal is to detect the same object of an arbitrary query image. We do not know

which kind of objects a query image has and the database images do not have theirs category labels. What users

Image retrieval Image classification Object detection
Output | Images containing same object Label of query Images containing same object
Database Images vectors Classifiers Detectors
# class Infinite Finite Finite

Table 1.1: Comparison of image retrieval with image classification and object detection.



Figure 1.1: An example of image retrieval. From a query image (left), an image retrieval system returns a set of

images (right) containing the exactly same object of the query.

only expect to image retrieval system is that the system gives a relevant set of images that contains the same object
or scene with different view points, time, illuminations.

An image retrieval system can be used for the various types of applications. This system is very meaningful
itself, because it satisfies people’s desire to retrieve images or videos containing the same objects or scenes they
already have in their query [2]]. It can be used for commercially as an product search engine as well if database is
composed of product images which have its product identities [23] 26]]. Likewise, retrieved visually similar
clothing from a query containing clothes a human have on. Other applications of image retrieval dealing with
large-scale database is enhancing some vision technologies which are not yet robust enough [28} 32 29, 30} 31].
For example, Hays and Efros 28] improved in-paining technology, which erases user defined regions in an image
and fill the regions with some visual contents, by retrieving visually similar images from large-scale database.
They filled the target region with contents of the retrieved images. As another example, Torralba et al. [32]
showed that we can recognize well scenes only with tiny image descriptors and image retrieval system in large-
scale database (80M images). Moreover, Agarwal et al. [29] 30, reconstructed a 3D model of Rome in a day

with the help of image retrieval system.



Chapter 2. Retrieval System

In general, image retrieval system can be divided into two major parts. One is image description part that
represents an image as a vector and the other is a part of data structure that stores large number of image vectors
as a database efficiently. Of course the data structure should be very suitable to search the database very fast and
accurately as well. Most image retrieval system uses Bag-of-Words representation as an image description method

and inverted file as an efficient data structure [2, |6} 8} 3,115} (14, 13} (10, 20L 9, 23] 122} |5, 133} [17].

2.1 Image Description

Most of the retrieval system is based on Bag-of-Words(BoW) model [2]]. Literally, BoW means a bag con-
taining words in a document. The description method that describes images based on BoW model is denoted as
BoW representation. The idea of BoW representation in image retrieval originally started from the text retrieval,
which describes a text document by the proportion of the word counts in a document. A document is vectorized to
a histogram, called BoW histogram, in which a bin of a word has a value of frequency of the word (term frequency)
as shown in Figure With a pair of BoW histograms, we can compare a pair of documents by computing a
distance between them. BoW model in text domain was firstly applied to image domain by Sivic et al [2]]. In
the BoW model of image domain, as shown in Table 2.1] an image correspond to a document of text domain. A
visual dictionary correspond to a text dictionary, and words occurred in a document correspond to visual words in
an image. [2] proposed the new concept of the visual words and the visual dictionary, called codebook, because
intrinsically an image does not have the concept of word. In order to represent an image as a set of visual words,
we consider a local descriptor in an image as a visual word because local description, which describes multiple
local regions in an image not a whole image region, is robust to occlusion, articulation, background clutter and
intra-class variations. Local descriptors are often computed in an image by a procedure of local region detection

[1 1391138146, 47]] and local region description [1} 137, 35,36} 33. 134].

Local Region Detection In local region detection stage, we detect interesting local regions [1} 39} 38,146} 147] or

points [48] 149, 50]. One of important condition of a local region is that it should contain information distinctive

Text domain Image domain

Text document Image
Text dictionary | Visual dictionary (codebook)

Text word Visual word

Table 2.1: Correspondence between text domain and image domain in the BoW model.
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Figure 2.1: An example of BoW histogram of a text document. A text document (left) is described by frequencies

of terms, called BoW histogram (right).

Figure 2.2: Examples of local region detection using Hessian-Affine detector [39]. Yellow ellipses denote the

detected regions. The two images are in relation of affine transformation caused by different viewpoint.

from the other local regions. In order to satisfying the conditions, we use information of edges or corners in an
image because flat regions do not have any information of shape. One another important condition is repeatability.
If a region or a point of an object is detected in an image, a corresponding part of another image containing the
same object should be detected. Detectors should guarantee repeatability as much as possible because the same
objects or scenes can be taken from various situations, which cause photometric and geometric transformations.
Photometric transformations mean photometric differences caused by noise, blur or illumination changes, and
geometric transformations means geometric changes caused by translations, rotations or different viewpoints.
Figure [2.2] shows an real example of repeatability in a situation of geometric transformation. The left image
is transformed to the right image because of different viewpoint. Nevertheless, in principle, the corresponding
detected regions of the left image also detected in the right image. At times, we do not use detectors, instead,
we define local regions or points uniformly from pre-defined step size, when we only want to consider global
distribution of color [33] or textures [36} [43]). Particularly, in the case of image classification problems, we
do not care repeatability because it has too large intra-class variance. On the other hand, in the case of image
retrieval problems, repeatability is one of significant elements to improve search performance because it should

detect exactly the same object of query from database.



Figure 2.3: Tllustrations of codebook generation. Left: Local descriptors (black dots) are scattered in their space.
Center: Local descriptors are clustered by k-means clustering. Right: A centroid of a quantized cell (Voronoi cell)
becomes a codeword. A set of every codewords denotes a codebook. Each codeword is visualized as each squared

graphic.

Local Region Description After detecting interesting local regions or points on an image, we describe them
using pixel intensities in order that the described results are invariant to several types of transformation as well.
We use various types of local description methods such as color [33}34], boundaries [35]], texture [36]] and gradient
[L, 37]. [33}134] describe points detected using color vectors from various color spaces, [35] using the contour
information of object boundaries, and [36] using edge responses from various types of filter, called filter bank.
The gradient based description method [[1} 37]], most commonly used in image retrieval, describes local regions
detected using gradient vectors in order to make it invariant to illumination and rotation changes. In the procedure

of [1,137], we normalize the size of local region before description in order to make it invariant to scale changes.

Codebook Generation We then create a codebook which is composed of codewords by quantizing the space of
local descriptor that extracted in training images as shown in Figure[2.3] Here a codebook denote a visual dictio-
nary, likewise, a codeword denote a visual word as shown in Table[2.1] In order to quantize the descriptor space,
k-means clustering method is generally used with pre-defined number of clusters (k) that means codebook size.
We can consider each centroid of quantized cell as a codeword and we call a set of every codewords codebook. In
image retrieval problems, the error caused by quantization process majorly harms retrieval performance because
the error gives rise to miss-matches between local descriptors. For this reason, generally, we set large k when we

conduct k-means clustering, from 10k to 10M, in order to reduce the error as far as possible.

BoW Representation We extract local descriptors from an image, after that, we assign a local descriptors to a
codeword based on minimum distances between the descriptor and every codewords. A single image, now, can
be described by how many times each codeword appears as shown in Figure in other words, we can represent
an image as a codeword frequency vector denoted by BoW histogram. As a result, like a text document, an image
becomes a visual document composed of visual words, in other words, a bag which contains visual words (Bag-
of-Words representation). When we compare a pair of images, we compute a distance between the pair of Bow

histograms. The smaller distance two images have, the more similar images they become.
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Figure 2.4: Illustrations of Bag-of-Word representation. Images (left) can be represented as BoW histograms
(center) using a codebook. A pair of images is compared based on a distance (right) between the two BoW

histograms.

2.2 Data Structure

Nowadays the size of database is becoming larger and larger, for that reason, it is becoming more and more
difficult to handle the tremendous amount of image data. In order to compactly store the database composed of
BoW histograms and database search with high speed, data structure of the image retrieval system is another major
issue. When we consider a database containing 1M images and a codebook size of 1M, if we directly store the
raw BoW histograms, total size of the database is 8Tbytes (1M x 1M x 8bytes) which is infeasible. In addition to
that, if we naively use exhaustive database search, a query time requires one tera times of multiplying operation
of floating point.

Most image retrieval systems based on high dimensional BoW representation use the inverted file structure
[2 6] which also originally comes from text retrieval system. Search engine using the Inverted file calculate very
fast and efficiently exact [,-distances between a BoW histogram of a query and that of database documents. A
BoW histogram stores codeword frequencies of an image, and it denote forward file. Contrary to the forward file,
in the inverted file, literally, a codeword stores indices of image files which contain the codeword as shown in
Figure[2.5] With this structure, we can only considers codewords occurred in a query image, not every codewords
in the case of forward file structure. For example, in Figure if the (n — 1)-th codeword is appeared only in
a query image, we only considers the image of id 1 not the other images in the database. In short, inverted file
enables both compact memory usage and fast database search without any accuracy loss because it stores only
image indices and considers only images containing codewords appeared in a query image.

When it combined with image retrieval system, inverted file gives another powerful advantage that it is
suitable for image retrieval system to reduce quantization error as well as reducing memory and time complexity.
Small quantization error is the most significant factor for image retrieval performance. Inverted file has a intrinsic
characteristic that the larger codebook size it has, the smaller average length of the image file lists it has. For this
reason, we can expect faster database search, as the codebook size gets larger. In short, the inverted file structure

enables more accurate performance with larger size of codebook, simultaneously more efficient performance in
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Figure 2.5: Illustration of inverted file structure. A rectangle filled with gray denotes a codeword with its index.
A number in white rectangle of the query denotes how many times the codeword appears in the query image, in
other words, a bin value of the query BoW histogram. A white rectangle in database denotes an image containing

the codeword itself.

terms of time complexity.

2.3 Limitations of BoW Representation

In the BoW representation based image retrieval, several limitations, quantization effect caused by codebook
size and lack of geometric information, arise since there are intrinsic differences between text domain and image
domain. In addition, regardless of the intrinsic differences, frequently occurring codewords in many images
(documents) diminish inter-image (inter-document) discriminability. Therefore, many approaches are Beside,

various techniques are used to improve image retrieval performance here.

Quantization Error One major difference between text domain and image domain is that images have no word
itself against text documents. In the text domain, each text word has its obvious meaning and can be described by
several alphabets exactly. In addition, we know finite number of pre-defined homonyms and synonyms as well,
and then we can define relationships for all finite number of words. Consequently, it is possible to distinguish
whether a pair of words is same or not exactly. In case of image retrieval, however, no precise words matching is
guaranteed yet because the visual words, which are forcibly generated by describing local regions and quantizing
the descriptor space, are more hard to be characterized than text data. For this reason, the quantization error is one
of major factor that harms the retrieval system. In Figure[2.6] local descriptors which are supposed to be assigned
to the different codewords (circles and triangles) are assigned to the same codewords with the small codebook
size (left) contrary to the proper codebook size (center). This kind of problem causes miss-matches, for example,

a miss-match in the middle one of Figure arises since the two different local descriptors on the right image
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Figure 2.6: Illustration of tree local descriptor spaces with various codebook size (k). Markers of each shape

(circle, triangle, square) denote noisy local descriptors, which should be assigned to a same codeword.

Small codebook | Large codebook
(small k) (large k)
Quantization error large small
Sensitivity to noisy descriptors insensitive sensitive

Table 2.2: Tradeoff between small codebook and large codebook.

are assigned to the same codeword denoted by a black circle. To overcome the problem of quantization error,
we set large size of codebook as shown in the bottom one of Figure in which the local descriptor causing a
miss-match before is assigned to another codeword denoted by black star. For this reason, in general, many image

retrieval system based on BoW representation uses large codebook consisting more than 1M codewords [6} [8]].

Noisy Descriptors In order to reduce quantization error which is a major factor to harm retrieval performance,
we set large k. However, one another problem caused by noisy descriptors arises with too large k: image retrieval
system has a trade-off between large k£ and small k£ as shown in Table On the contrary to quantization
error, local descriptors that are supposed to be assigned to a same codewords are sometimes assigned to different
codewords when we use large codebook. For example, in the right one of Figure 2.6] noisy local descriptors
marked as circles should be assigned to a same codeword, however, they are scattered to three different codewords
because of too large codebook size. To compensate this phenomenon, much effort has been put. They include
conducting multiple assignment [41} [13], soft assignment [3]], Hamming embedding [15} [14} [13]], hierarchical

scoring [6}10] or product quantization [42} 43]].

Lack of Geometric Information One another major difference between text and image is that, compared to a
text document, the geometric relations of visual words are very important factors in an image to recognize what
the image is about. However, a basic image retrieval system applied with text retrieval approach never considers
the geometric information, and it causes a serious problem of mismatches between visual words. In order to

exploit geometrical que, we encode geometrical constraint [15} [14] [10, 5, 21}, 22]] or conduct post-processing
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Figure 2.7: An example of image matching. The left image and the right image are matched using local descriptors.
Top: The red line denotes true-match and the red dotted line denotes miss-match. Middle: Matches with small
size codebook (k=5). The white array denotes codebook composed of 5 codewords. Three detected local regions
are assigned to the same codeword. Bottom: Matches with large size codebook (k=8). The white array denotes
codebook composed of 8 codewords. Two detected local regions, which should be matched, are assigned to the
same codeword. The other detected region (red dotted circle), which should not be matched with the region (red

circle) of left image, is assigned to another codeword.
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Figure 2.8: A function that converts document frequency (df) to inverse document frequency (idf) in the ¢ f-idf
weighting scheme. The function is idf = log ( %) where N is the total number of documents in a database. In
this example, N is 1000.

that verifies geometric relations between a query and a set of retrieved images [8, [14} [19] [16l 20]. The former
encode the intrinsic information of local descriptor, especially SIFT descriptor [1]], like orientation (f) and scale
(o) into BoW representation. It excludes or weight down some local descriptors with scales and orientations being
against the other descriptors’ tendency. The latter re-ranks a candidate set (initially retrieved images) from a query
according to a strong geometrical verification step, called Random Sample Consensus (RANSAC) [51]. Through
RANSAC, we can estimate a geometrical transformation between a query and a candidate image (among initially
retrieved images), in other words, we can decide which descriptors are inliers (the others are outliers). According

to the number of inliers with respect to a query image, we re-rank the candidate set to get higher precision.

Frequent Codewords BoW model based image retrieval system follows typical codeword weighting scheme
of text retrieval system, called ¢ f-idf weighting, because it uses text like representation. ¢ f-idf (term frequency
and inverse document frequency) weighting scheme, which weights down the negative influences of frequently
occurring words in text retrieval [40], is directly applied to image domain [2]] for the same reason. This weighting
method has an obvious and reasonable concept that inter-class discriminative power of frequently occurring words
is substantially small. Some terms like ’is’, was’, ’and’, "or’, ’a’ and "the’, which occur in almost all documents,
harms discriminative power because its frequency is too large relative to other terms. In order to detect that kinds
of frequent word, the weighting scheme computes document frequency (df). Document frequency (df) of a
word k means the number of documents containing the word k. Because a word of large document frequency is
considered unimportantly, the weighting scheme gives it a small weight value, called inverse document frequency
(idf), according to the decreasing function shown on Figure Sivic and Zisserman [2]] showed that the ¢ f-idf
weighting can improve performance in image domain as well, since then it has become the most common and

general weighting scheme in the BoW representation based image retrieval.

~10-



Various Approaches for BoW Representation In the field of image retrieval based on BoW representation,
various approaches for improving retrieval performance has been attempted. In order to carry recall to the pinch
as high as possible, a retrieval technique called query expansion [20, 9, 23] was proposed. The idea of the
query expansion is that retrieve again with only inliers, which are selected as a result of RANSAC based spatial
verification, not all visual words in query. After removing outliers from BoW histograms of the query and spatially
verified images, we retrieve again from database with an averaged BoW histogram as a new query. Recently, as
the size of database is growing extremely because of tremendous amount of web image data, we call it large-scale

image retrieval, several approaches to compactly represent BoW model has been attempted as well [52,153]]. py,
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Chapter 3. Motivation and Problem Definition

In this chapter, motivated by of real experimented data from several related works, we define problems what
we willing to solve in this thesis. In Section[3.1] we introduce experiment results we motivated, and in Section[3.2]

we define what we will solve.

3.1 Motivation

In this thesis, we focus on the limitations of conventional codebook weighting scheme, ¢ f-idf [2], and hier-
archical scoring using hierarchical codebook, called Vocabulary Tree [6]. In addition to that, we address a new

problem that, so far, there has been no approaches to consider intra-class key word.

tf-idf Weighting Even though ¢ f-idf weighting scheme becomes the most common framework in BoW repre-
sentation based image retrieval, strangely, performance improvement by the ¢ f-idf weighting is usually very low.
Moreover, sometimes it rather hurts performance in some specific classes as shown in Table [3.1] Performance
improvement on Oxford5k dataset after ¢ f-idf weighting is only 0.47% in average. In the case of Bodleian class,
it rather hurts performance by 2.67%. As the experiment shows, actually, ¢ f-idf weighting gives very slight and
in consistent improvement. There has been several works addressing the problem of ¢ f-idf weighting. Jegou et al.
[13] analyzes the limitation of ¢ f-idf weighting attributes to the gap between the text domain and image domain.
Text has discrete spaces and a finite alphabet. They insist, that the images have a continuous feature space so the
quality of matches (the closeness of the descriptors in feature space) is important, while ¢ f-idf weighting does not
take this into account. They tried to overcome the limitation of ¢ f-idf weighting by additionally using quality of
matches (Hamming distances) with the conventional ¢ f-idf weighting. Wang el al. [[10] also tried to overcome the
limitation by additionally using the path information of which the descriptor has followed in hierarchical codebook

(Vocabulary Tree [6]) along with ¢ f-idf weighting.

Hierarchical Scoring Nister and Stewenius [6] generated very large codebook efficiently through hierarchical
k-means clustering in order to reduce quantization error and secure discriminative power. We call such kind of
codebook hierarchical codebook because it has a hierarchical structure as shown in Figure[3.1] In the toy example
of Figure which has branch factor of 2 and depth of 3, the nodes are divided into two clusters with k-means
clustering at the first level. The two clusters are then divided into two clusters respectively, and the nodes in the
lower levels go through the same process until they reach the pre-defined depth. In the end, we earn very huge
codewords within a feasible time. Although it can bring about cumulative miss-quantization as it goes to a larger
level, it has a powerful advantage of hierarchical scoring as well as providing a very large codebook, more than

IM. Hierarchical codebook based image retrieval uses hierarchical scoring which treat not only leaf nodes but also
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Average Precision(%)

Class Uniform weight | idf weight | Improvement
All souls 49.31 50.47 +1.17
Ashmolean 55.61 57.92 +2.31
Bodleian 55.73 53.06 -2.67
Christ church 58.85 59.14 +0.29
Hertford 70.53 71.09 +0.56
Magdalen 12.22 13.27 +1.05
Radcliffe camera 65.42 66.01 +0.59
mAP(%) 52.53 53.01 +0.47

Table 3.1: Experiment by Cai et al. [11] representing performance improvement after ¢ f-idf weighting on Ox-

ford5K dataset [8]. mAP denotes a mean value of average precisions (AP) of each class.

Levels considered | UKbench (Top-4) | Oxford5K (mAP)
6 3.16 439
5,6 3.07 41.8
4,5,6 3.29 37.2
3,4,5,6 3.29 353

Table 3.2: Retrieval performance with various number of levels considered on UKbench dataset by Nister and
Stewenius [6] and Oxford5K dataset by Phibin et al. [8]. Top-4 score of UKbench dataset, a specified performance

metric for the dataset, denotes average number of relevant images for each class.

nodes of different levels as codewords to compensate problems like being sensitive to noisy descriptors. In other
words, we reduce quantization error by considering leaf nodes as codewords, at the same time, we compensate
negative effect caused by noisy descriptors by considering parent nodes as codewords. For this reason, generally,
the performance becomes better if proper multiple levels are considered in hierarchical scoring. On the other hand,
however, hierarchical scoring sometimes lowers the precision as shown in Table In the result [6] on UKbench
dataset, hierarchical scoring with two levels (level 5, level 6) shows lower performance than flat scoring (level 6)
although the performance usually improves when we consider more numbers of levels. OxfordSk dataset results
[8] shows the problem more apparently. It shows that using more numbers of levels degrades the performance.
Phibin et al. [8] analyzed that data points may be suffering from bad initial point in the level closer to the root,
which is denoted by cumulative miss-quantization in this thesis. They added that hierarchical scoring has not yet
overcome this problem and that more work is needed to understand the phenomena. Likewise, hierarchical scoring

has low consistency in the number of levels that are considered in scoring, the improvement and the dataset.

Intra-class key-word When we focus on codewords weighting methods of image retrieval based on very large
dimensional BoW representation, most of the methods that have been studied to increase the distinction between

classes, do not take the fact that images of different classes have different key words into consideration. Only
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Figure 3.1: Illustrations of hierarchical codebook [6] with branch factor of 2 and depth of 3. In this case, the

number of levels considered in hierarchical scoring is 2 (from depth 2 to 3).

same standard is applied to the images of every class, in other words, every class images applies a same weight
vector independent with what their class is. ¢f-idf weighting method [2]], most retrieval systems use, generate
a single weight vector obtained on a given database. Image retrieval systems of [5, [7] select most distinctive
codewords for every class using boosting algorithm [4]. Weighting methods for encoding spatial information
[LSL 114 1104 5L 211 22] into BoW representation apply different weights to codewords according to geometrical
relations in local descriptor level, not in class level. Weighting methods which consider quality of match, called
multiple assignment [41} [13]], soft assignment [3], Hamming embedding [15} [14} [13], hierarchical scoring [6,
10] or product quantization [42} 43]], also apply different weights to codewords according to distances between
a codeword and local descriptors in local descriptor level, not in class level. There are two reasons why the
codewords weighting method considering intra-class key words has not been attempted. The first reason is that
recent BoW representation has too large dimensionality because of too large image database. Therefore, existing
machine learning method cannot be applied to image retrieval, which is not free from time and computational
complexity. Secondly, as shown in Table [I.T] the real scenario of image retrieval does not have finite number
of classes and the database can not actually be categorized. However, if we assume a retrieval system on an
image database pre-categorized, a weighting method considers intra-class key words is needed because every
class has their key words which represent the class most well. For example, in text domain, words like ’gene’ and
’inheritance’ are important in the document class of genetics, on the other way, words like ’gravity’ and ’velocity’
are important in the document class of physics. In image domain, as shown in Figure [3.2] codeswords about stripe
patterns are key words in zebra class, on the other way, codewords like dots patterns are key words in leopard

class.
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Figure 3.2: Illustrations of intra-class key words (important codewords) in zebra class (left) and leopard class
(right).

3.2 Problem Definition

tf-idf weighting and hierarchical scoring which have been widely used in image retrieval based on very
high dimensional BoW representation. However, it not only brings too slight improvement and inconsistent result
according to different datasets but also rather degrades the performance as shown in Table [3.1] To solve this
problem, we suggest database specific weighting strategies of ¢ f-idf weighting and hierarchical scoring that can
bring the optimal result to the given objective database. The proposed method maintains the frames of conven-
tional ¢ f-idf weighting and hierarchical scoring without any modification. Moreover, we do not consider extra
cue like geometric information, quality of the descriptor match, or path information of the descriptors in hierar-
chical codebook. We focus on improving ¢ f-idf weighting and hierarchical scoring themselves through learning
procedure that only takes document frequency (df) and level (I) of hierarchical scoring information into account.
In addition to that, through the proposed database specific weighting strategies, we considers intra-class key words
to differently give relevant weight values to codewords for different classes. In conclusion, we propose a code-
words weighting method, which not only solves the problem of ¢ f-idf weighting and hierarchical scoring but
also make intra-class key words into consideration, for the image retrieval based on very high dimensional BoW

representation.

— 15—



Chapter 4. Learning Weight Mapping Function

The proposed codebook weighting method applies relevant weight to each codeword, following the conven-
tional assumption of BoW representation that each codeword occurs independently in an image [13]. We define
several types of signature that is closely related to inter-class discriminability and calculate the signature value of
each codeword. In other words, a codeword has its own signature value and that is correlated with importance of
the codeword. Then, a relevant weight value is assigned to each codeword, according to its signature value. For
example, if a signature type is in inverse proportion to importance, a codeword with a large signature value gets
a small weight value. In a similar way, a codeword with a small signature value gets a large weight value. We
denote the signature value obtained from each codeword as key-signature and the function which assigns weight
from the key-signature as Weight Mapping Function (WMF).

The overall framework of the proposed method is described in Figure We randomly sample a number
of pre-labeled classes from the given database and use them as training data. In actual scenario, we label a
pre-defined number of sample images of given database and use them as training data. After that, we compute
key-signature values of pre-trained codewords using the training data. We then train WMF that can maximize the
inter-class distinction of the sampled training data. From the learned WMF, we can convert the key-signature value
of a codeword into a weight value and eventually obtain the weight vector that corresponds to one codebook. In
query time, we apply the weight vector to the BoW histogram of query and that of database, and score the results.
That is, our method makes additional memory usage and additional computational cost almost zero in on line
stage, because what we only have to do is applying the weight vector learned in the off-line phase to the scoring
function in on-line phase. Note that we do not consider any other extra queues like quality of matches, geometric
information, path of a descriptor goes down in hierarchical codebook, et cetera.

We will define three types of WMF in Section [.1] and three types of key-signature in Section [4.2] After
that, objective function to learn WMF using defined key-signatures and its optimization method are described in

Section[4.3]and Section [d.4]receptively.
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Figure 4.1: Flow chart of the proposed system. We train Weight Mapping Function (WMF) in off-line phase,
which converts a key-signature value for each codeword to a weight value, in order to get a weight vector. The

trained weight vector is used when we score up database vectors from a query vector in on-line phase.

4.1 Weight Mapping Function (WMF)

Weight Mapping Function maps a key-signature value of each codeword into a weight value:

where sy, is the key-signature value of k-th codeword of K size codebook and wy, is the weight value mapped
by weight mapping function W M F'(-). The expected shap of a WMF depends on the type of key-signature. If a
key-signature value of a codeword is in proportion to importance of the codeword, the WMF should has increasing
shape. In contrast to that, if a key-signature of a codeword is in inverse proportion to importance of the codeword,
the WMF should has decreasing shape. For some types of key-signature, some codewords with moderate key-
signature values can be more important than the other codewords with small or large key-signature values. In this
case, the proper WMF has bell shape like Gaussian function. Therefore, appropriate freedom is needed for WMF
to have various shapes. We define three types of WMF with different basis as described in Table4.1]to experiment
various shapes of WMF.

Exponential WMF with four parameters has either increasing or decreasing shape and n-th degree polynomial
WMF with (n + 1) parameters has (n — 1) number of extremums at most. Exponential WMF, of course, cannot

have extremums, on the other hand, polynomial WMF can have. Moreover, we defined a special type of WMF that
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WMF Type WMF Shape

Exponential W MFeqp(sk) =p1 - exp(ps - Sk + p3) + pa Only increasing
or only decreasing
Polynomial WM Fpoy(s) = > 0o pi - Sk Maximally
n — 1 extremums
Lookup Table WMFryr(sk) =pj,t ={i|]l <j <J}, Free

where J is a possible number of the key-signature values sj.

Table 4.1: 3 different types of WMF and its possible shapes.

has a lookup table which returns a weight value of every key-signature to make WMF completely free from shape.
In this case, the number J of WMF parameters is equal to the number of possible values which key-signature sy,

can have.

4.2 Key-signature

To learn WME, we have to define a key-signature under the conditions that 1) it can be independently com-
puted from each codeword and 2) it should related to the discriminability. That is, the key-signature can be
regarded as the importance factor of the codeword. If a type of key-signature is highly correlated with discrimina-
tive power, the shape of leaned WMF would show more clear tendency, as a result, we can expect better retrieval
performance. It is the reason why defining key-signature is the most important part in the proposed method. In
this thesis, we defined three types of key-signature: document frequency, level of hierarchical codebook and intra-
class scale-normalized standard deviation. As shown in Table document frequency and level are computed
from whole database and converted to a weight value shared by every class. However, in order to consider intra-
class key words, intra-class scale-normalized standard deviation is computed from a class data and converted to a
weight value for a class only. In other words, with respect to a codebook, a vector of document frequency or level
is converted to a single global weight vector, on the contrary, a vector of intra-class scale-normalized standard
deviation is converted to a intra-class weight vector.

In this section, we define the three types of key-signature, Document frequency, level and intra-class scale-

normalized standard deviation, in sub-section [.2.1} [£.2.2] and [4.2 3| respectively.

4.2.1 Document Frequency

In conventional ¢ f-idf weighing scheme, term frequency ¢ f;, means the number of k-th codeword contained
in an image. Here we can consider ¢ fj as a value of k-th bin of a BoW histogram. Document frequency dfy, of a
k-th codeword means the number of images contain the codeword in a database, and inverse document frequency
idfy, is the logarithmic value of the reciprocal of dfy, like:

N
idf, = log (dfk) , 42)
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Key-signature type Computed using Converted to (by WMF)

Document frequency (dfy,) Whole database Global weight value (wg)
Level (1) Whole database Global weight value (wg)

Scale-normalized standard deviation (05’1,5 ) y-th class data | Intra-class weight value for y-th class (wy x)

Table 4.2: Comparison of three different types of key-signatures of k-th codeword. y denotes a class index.

where N is total number of images in database. In ¢ f-idf weighting scheme, idf}, plays a role as an weight value
of the k-th codeword because it is multiplied by ¢ fr, when we compute a distance between a query image and a
database image. As a k-th codeword frequently occurs in many images, dfy gets larger, and then idf; becomes
smaller. The more times the codeword occurs in many images, the less important the codeword becomes. Since
a codeword has been considered to have a larger discriminative power with smaller dfy, we can think dfy, is
correlated with importance of the codeword. Therefore, we define dfy, as a key-signature of the k-th codeword. In

this case, the WMEF of the original ¢ f-idf weighting scheme is

wi = WMF(dfy) = log (C‘l’\;) — log(N) — log(dfy), (43)

where wy, is the mapped weight value of k-th codeword by the WM F'(-). Since W M F () is a decreasing function
in original ¢ f-idf weighting as shown in (4.3)), codewords with larger df}, are assigned smaller weight (idfy). Our

goal here is to find the most relevant WMF in the database we are trying to retrieve.

4.2.2 Level of a hierarchical codebook

Level of a hierarchical codebook is described in Figure[3.1] Codewords on a level closer to leaf (level 3 in Fig-
ure have small quantization error because the descriptor space finely splits into much more cells. Therefore,
we can think codewords on a level closer to leaf level have better discriminability. However, in terms of sensitivity
to noisy descriptors, Codewords on a level closer to root (level 0 in Figure [3.1) are robust to noisy descriptors.
For this reason that hierarchical codebook shows trade-off between higher level and lower level, proper balance
between them is needed to enhance discriminative power. In order to find optimal weights according to levels, we
define the level of hierarchical codebook as another type of key-signature. The conventional hierarchical scoring
does not apply the different weight to different levels, but equally treats the codewords that belong to the same
level, like

W — WMF(lk) = 1, (44)

where [;; is the level and wy, is the mapped weight value of k-th codeword by the weight mapping function
W MEF(-). In the conventional hierarchical scoring, a drawback that the quantization error significantly increases
around the root was overcome by ¢ f-idf weighting. Our goal here is to find the most relevant WMF for the

database we are trying to retrieve and apply it to hierarchical scoring, only using the level.
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4.2.3 Intra-Class Scale-Normalized Standard Deviation

For a class, intra-class standard deviation (ICSTD) of a codeword frequency can be a nice intra-class key-
signature because we can consider a codeword with a small ICSTD of its frequencies as a key-word in the class.
On the other hand, a codeword with large ICSTD can be considered unimportantly in the class because some
images of the class may have large number of this codeword, however, the other images may not. In order to
use this kind of value as a key-signature, we have to find the standard deviation of each codeword at each class.
However, getting the standard deviation without any normalization causes a problem of fairness because the scales
of a BoW histogram bin in a class vary a lot. In other words, an important codeword in a class can have large
standard deviation of its frequency because it occurs very frequently in images of the class. In Figure d.2[a), we
made four BoW histograms with a hierarchical codebook [6]] of 1M size (we visualize only 50 codewords among
1M codewords) and expressed the standard deviation of each codeword frequency. Here we can confirm that the
scales of codeword frequencies are varying with significant differences. If we just use the standard deviation as
key-signature at this stage, it becomes inequitable because most of the codewords with large frequencies possess
large standard deviations compared to the other codewords with small values. To solve such problem, scale of
each codeword frequency (each histogram bin) should be normalized like

T

SN _ sn sn sn 5T —
dyvz - |: y,z,10 "7 7dy,z,k7 e 7dy,z,k ’ dy,Z,k -

dc,z,k

4.5
max(dy 1 g, 5 dy k5 dy 7, k) (*+3)

where d;Y € R¥(K is codebook size) is a scale normalized BoW histogram after L;-normalization of image
z € {z]1 < z < Z,} of class y and Z,, is the number of images of class y. d. . denotes a k-th dimension
value (k € {k|1 < k < K}) of a image z of class y and d;", j, denotes a scale normalized value of d,. . The
function max(.) returns a maximum value among the values in the bracket. In Figure b), dotted lines indicate
the values which have been obtained through scale normalization of each BoW histogram bin with and
their standard deviations (red line), called intra-class scale normalized standard deviation (intra-class SNSTD).
Comparing the intra-class SNSTD (Figure f.2(b)) with the original one (Figure [4.2[a)), the intra-class SNSTDs
equitable to codewords of every scale has been obtained.

In order to verify SNSTD, the proposed key-signature, we conducted a toy experiment which shows that 1)
we can index codewords in order of importance using SNSTD and 2) important codewords in a class are different
from other class. We designed the toy example under the assumption that a variance of frequencies of a codeword
within a class could be used to determine the importance of the codeword. It was conducted with a simple dataset
we made as shown in Figure 4.3 We made the small dataset about fruits composed of banana, strawberry, kiwi
and blueberry classes because these classes have their representative color. We then clustered RGB color vectors
of each pixel of every image to represent an images with a bag of color words histogram like [33} [34]. The
clustered vectors were then made into 30 color codewords through k-means clustered algorithm. After that, we
described each image with a histogram using 30 color words and sorted the color codewords in the direction
where the SNSTD increases because the variance of a codeword is expected to be in inverse proportion to

its importance. Figure 4.4 shows the experimental results of sorting the color codewords of images in each class
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Figure 4.2: Among 1M codewords made up by using hierarchical clustering [6] with a depth of 6 and branch
factor of 10, we used the first top 50 codewords to visualize BoW histograms and marked the values with a line in
order to be readily recognized. (a): L;-normalized BoW histograms of four images (black dotted line) in a class
and standard deviations for each histogram bins (red line). (b): Scale normalized BoW histograms (black dotted

line) of (a) and its standard deviations (red line).

by the SNSTD. Reddish codewords with SNSTD of 0 lie above yellowish codewords in the sorted result of the
banana class. The reason why the SNSTD of these reddish colors is 0 is that the images of the banana class do not
include a single reddish codeword. Even though the reddish color words are not used to express the banana class,
they can play a role as a key-word, since they should not appear in the banana class. Right next to the reddish
codewords are yellowish codewords which actually best express the banana class. These yellowish codewords
should be key words of the banana class because it is the most representative color. The following color words
after the yellowish codewords are less important ones with high standard deviations, only frequently appearing in
some images of the banana class or rarely appearing in the other images. Similarly, the rest of the classes show
the same result. In conclusion, we investigated the validity of SNSTD as a key-signature with a simple experiment
and the result shows SNSTD can be used as a key-signature type because it shows strong tendency of inverse

proportion to codeword importance.
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Figure 4.3: Top: Small database containing 24 images of 4 fruit classes obtained by randomly selecting the result
of Google image search from text queries. From left to right, the image class is banana, kiwi, strawberry and
blueberry. Bottom: A codebook obtained from the database of Figure d.3] Using every RGB vectors of uniform

grid points as local descriptors, the codebook is generated by k-means clustering with k£ = 30.
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Figure 4.4: Sorted color codewords in increasing order of SNSTD computed from (4.5) in each class.

4.3 Cost Function

We have to learn the parameters of WMF described in Table 1] that maximize the discriminability among
the training class by using the randomly sampled training data. We randomly sampled M training classes from
a database D = {d,,|]1 < n < N} which has total N BoW histogram d,,s, and then made a training set D' =
{d,|1 <n < N'} C D which has N*" number of entities of BoW histogram d,,s. Each training class of class id
m(1 < m < M) has G™ number of entities of BoW histograms. We will call a set of BoW histogram ids that a
single training class m has as I = {i;'|1 < g < G™).

Our goal here is to design a cost function,

p = argmin cost(p), (4.6)
P
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about the set of parameters of WMF p, optimize it, and find the p that can maximize the discriminability. The

definition of the parameter set p is described in Table[4.1] The proposed cost function is composed of three terms,

COSt(p) = —4LmAP (W) + )\1 : Tguide (W) + )\2 : Tregularizatian (W)7

T @.7)
w=lw, wy - wK} . wy = WMFP(sy,)

with A; and )\, that balance the ratio of three terms. WM EFP(-) means a WMF which has parameter p. The first
term T, ap(W) is the mean average precision (mAP) within the training data. To make smaller cost value with
larger mAP, we multiply —1 with T, 4p(w) in (4.7). The second term Tgy4. (W) works as a guide for a optimizer
to go better way that decreases the first term (increases mAP). Finally, T4 (r) is a regularization term, in order
to avoid over-fitting, that makes the curve of WMF smooth. The following is detailed explanation of these three

terms.

mAP Term The term 7, 4p(w) calculates mAP that does not interpolated. mAP is a mean value of average
precisions with respect to every queries. Here, the average precision (AP) means that average value of precisions

of all ground truth images with respect to a query. mAP, same as the term 7}, 4 p(W), is computed like

Thap(w) =mAP(w)= > > — (4.8)
m=1 g=1 T(qgvdlg )

for a test query set {@™|1 < m < M} C D' in training data D" after applying a weight vector w. The subscript

w means that a vector x € R¥ is weighted by w like

.
Xw:[wl.xh Wy - Ty, e wK.mK] (4.9)

-m

and r(q}}, d.g ) returns the ranking of a vector di‘j’ (g-th vector in class m which has a vector id i¢") with respect
to the m-th class query q?'. Finally, we multiplied T;,, 4p(W) by —1 as shown in (4.7) to maximize mAP of

training data when we minimize the cost.

Guide Term However, as expected in equation (4.8)), in spite of variation of w, mAP does not change if the
order of vectors in Figure [4.5]does not changes with respect to queries. For this reason, the optimization ends up
without significant effect if we only use T;,, 4 p(W) as a cost function. We therefore added a term 7,4 (W) to

make the cost continuously change, and simultaneously, induce mAP to increase with the variation of w:

im
M Gn qu} - du?

Tyuige(W) = > Y — 1 , (4.10)

= S0 e — dgly - B (a4 )

where ||-||; means L-norm and B(-) is an binary indicator function,
B (q7 dl,dQ) =U (r(q,dl) —r(q, d2)) , 4.11)

which returns 1 if d? ranks higher than d* with respect to q and 0 for otherwise since U|(+) is an unit step function

that returns 1 for a input of a non-negative value and 0 for otherwise. Therefore, the denominator of (4.10) denotes
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Figure 4.5: Tllustration of the role of the guide term T},;q4. (W) in equation . A Red circle means the query
q"™ of class m, circles with pluses inside denote positive vectors (ground truth vectors) of class m with respect to
the query q™. Circles with minuses inside denote negative vectors which are not in class m. The image on the
left shows the first positive vectors (first ground truth vector) ranked at 3rd pushing out the negative vector and
approaching closer to the query by the guide term T},,;4.(w). Likewise, the image on the right is about the second

positive vector ranked at Sth.

sm

the sum of L;-distances between negative vectors, that are ranked higher than positive vector d. , and query q;.
The numerator, on the contrary, is sum of the L-distances between positive vectors di’n and query qJ'.
Figure[d.5]shows the role of the equation (.10). For to get smaller, positive vectors should reach closer
to the query according to the decreasing numerator in (4.10). On the contrary to this, the negative vectors ranked
higher than the positive vectors should go farther from the query according to the denominator in (#.10). Figure
is real data which show the correlation between the T},,;4. (W) value and mAP with respect to 300 cases of w.
The correlation coefficient value between Tyy,;q. (W) and mAP is —0.97, so it shows that Tg,;q. (W) works well

as a guide for an optimizer to increase mAP.

Regularization Term Finally, to prevent WMF from over-fitting on the training set, especially WM Fryr(sk),

we added a term Treguiarization (W) Which gives penalty to the WMF with severely fluctuating shape:

2

50 - ds 4.12)

Smazx
Tregularization (W) = /

Smin

Tegularization (W) refers to the area surrounded by second derivative of WMF and s-axis. The more drastically the
fluctuation repeats, the larger the ngularimtion(w) becomes. Discrete version of (4.12) was used to calculate the
value. Figure shows the effect of the regularization term on Oxford5K dataset. The fluctuated WMF without
the term is smoothed like blue line with the term added. If we use the term with proper A; in

we can secure generallity, which improves performance on test data as well as training data.
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Figure 4.6: Plot of mAP(%) and T,,;q.(w) on Oxfored5K dataset. Each point is generated from identical weight

vectors. The correlation coefficient of mAP(%) and T gy;qc (W) is —0.97.
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Figure 4.7: Plot of two WMFs of LUT type with document frequency as a key-signature. The WMFs were learnt
on Oxford5K dataset. \; denotes the balancing factor in (4.7)
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4.4 Optimization

When we are about to optimize the cost function (4.7) to get optimal weight vector w, a problem of too
high computational complexity arises. Before optimization, we reduced computational complexity by means of

preparing pre-computed data which will be directly used for each iteration of optimization.

Computational Complexity Reduction The parts with the largest computational cost in our cost function are
1) that we have to find the weighted L,-distance between N!" number of entities of K -dimensional training data
and M number of entities of queries every-time in Tgyiqe (W) (M x Ny x K vector element wise computation
is required.) and 2) that there are too many parameters in case of WM Fryr(s;). In order to reduce the first
one, we apply two techniques: pre-calculating distance vectors and dimensionality reduction via key-signature

quantization. We pre-calculated M x N'" distance vectors (v, ,) of M queries to all N*" training images like

Vmn = Am — d,, (4.13)

where m € {m|l < m < M} isaclassidand n € {n|l < n < N'} is a training image index. However,
because the dimensionality of the distance vector [4.13] is too large (e.g. K=IM), it is needed to reduce the
dimensionality if possible. In order to reduce dimensionality, as shown in Figure [4.8] after we extracted a key-
signature vector s from a codebook, we quantized the key-signature elements {s;|1 € k € K} into key-signature
cluster centroids {s;lfz\l € h € H and H < K} by means of 1-dimensional k-means clustering. And then, we
compressed a distance vectors by summing its elements values of each same cluster as shown in Figure 4.9 The
second complexity that too many parameters in WM Fryr(sy) was resolved by the key-signature quantization
simultaneously because the number of possible key-signature values was reduced to the number of clusters at most

(from J to H, H < J). In other words, the number of possible parameters of W M Fy7(sy) was diminished to

H at most.

Optimization Strategy In order to minimize the cost function and find optimal shape parameters p (Table
of WMF, we utilized MATLAB built-in functions both “fmincon” and ”simulannealbnd”. Firstly, starting from
an initial point pg, “simulannealbnd” operated by Simulated Annealing algorithm [54] was used as an global
optimizer to get rough initial point p,. as shown in Figure[.10] After that, we used “fmincon” operated by Interior

point algorithm [S5]] to get final solution p more precisely starting from the rough initial point p,..
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Figure 4.8: Illustrations of key-signature extraction and key-signature quantization. d,(€ R*) means a BoW
vector of image n with codebook size K. Each square of a BoW vector means each dimension, in other words,
that means each codeword or BoW histogram bin. s(¢ R%) is the key-signature vector containing key-signature
values for each codeword. After conducting 1-dimensional k-means clustering with & = « using elements of s,

we get a dimensionality reduced key-signature vector sq.(€ R*) containing o quantized key-signatures.
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Figure 4.9: Tllustrations of generating dimensionality reduced distance vector. A square denotes a codeword and
an array of squares denotes a distance vector between two BoW histograms q and d;. Squares with each color
means that they are members of a same cluster generated by key-signature clustering in Figure .8] The circles

with Y denote operations of summation.
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cost(p) = —Tpap(W) + A4 - Tguide w) + 4, Tregular(w)

}

Global optimization
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Figure 4.10: Optimization strategy. p denotes shape parameters (Table determining the shape of WMF and
p- denotes rough solution obtained by simulated annealing [54].  is the final solution obtained by Interior-point

algorithm [55]] from the starting point p,..
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4.5 Codewords Weighting

We trained WMF for each signature type by using the method in Subsection [4.4] with respect to three types
of key-signature, document frequency, level of hierarchical codebook and SNSTD. We train WMFs with the same
method regardless of key-signature type, however, method for obtain weight vectors from WMF and applying the
weight vector is different depending on whether a weight vector is intra-class or not. As shown in Table[d.2] a
key-signature vector of document frequency or level will be converted to a single global weight vector, on the
other way, a key-signature of SNSTD of a class will be converted to a intra-class weight vector for the class.
For this reason, different strategies for weighting method is needed according to global or intra-class codewords

weighting.

Global Codewords Weighting If we define C key-signatures for global codewords weighting, we can convert
the C' key-signature vectors to C' global weight vectors for a codebook. We apply a set of C' global weight vectors

-
W = {w.|1 < ¢ < C} to a pre-normalized query vector q = |:Q17 g2, - QK} (BoW histogram) and a

T
database vectord = [dh dy, -, dK} (BoW histogram):

C
Tk = qr - [Ty w5,

o “4.14)
di »= dy - []ozy wf,

and then we get a weighted query q,,:q and a weighted database vector d ;4. After that, we conduct scoring of
the database vector like [6]:

score(q,d) = [la -4, (4.15)

where score(q, d) is the scoring function of d and q of which the value becomes smaller as the similarity gets
larger because ||.||; returns L;-norm. Note that we do not normalize the weighted vectors because we train the

WMF without normalization after applying a weight vector.

Intra-class Codewords Weighting The point of intra-class codewords weighting was that the key words of
images differ from class to class. Even if we have made optimal weight vectors through indexing codewords using
SNSTDs for each class, however, we encounter a significant problem that we do not know the class of the query
image. In other words, in query time, we do not know which weight vector we have to apply because we do not
the class of the query. We propose a solution that, we assume the database is pre-categorized, we make subsets
from the query without intra-class codewords weighting and re-ranking them as shown in Figure .11} In the case
of intra-class codewords weighting, since we assume that database images are pre-categorized, we can make a set
of candidate classes for the query and obtain a set of intra-class weight vectors according to the candidate classes.
We then apply the intra class weight vectors into a set of every images corresponding to the candidate classes.

After that, we re-rank the weight-applied images and get final results.
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Figure 4.11: Illustrations of BoW histogram space, in which it shows procedures of obtaining sub-classes and
selecting intra-class weight vectors to be used for re-ranking. Initial result is obtained by k-nearest neighbor-
hoods without any intra-class codewords-weighting scheme. Each data has its class information (label) and a

corresponding weight vector because of the assumption that database images are pre-categorized.
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Chapter 5. Experimental Result

To evaluate the performance of proposed method, we conducted various experiments with two dataset. We
will first introduce the dataset we used in Section 1, experiments with document frequency as a key-signature
of WMF in Section 2 and experiments using level in Section 3. Last, we will introduce the result of applying
document frequency and level to the weight in Section 4. We show various experimental result with tables and
figures in which some symbols are used to denote various weighting method. The descriptions of symbols to be

used are in Table[5.1]
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Method symbol Description

None No weight vector applied (uniform weight) and L;-normalized.
s(org) Weighted by original WMF of key-signature type s and L;-normalized.
(For example, df(org)) (Weighted by original ¢ f-idf weighting and L;-normalized. [2]])

(For example, level(org)) | (Not weighted according to levels and L;-normalized. [6])

s(Exp) Weighted by WM Fg,,(.) of key-signature type s.
s(Poly2) Weighted by WM F'p,(.) with order 2 of key-signature type s.
s(LUT) Weighted by WM Fpyr(.) of key-signature type s.

S1(WMF 4)+s2(WMFp) | so(WMFp) is applied after applying the method s;(WMF 4).

Table 5.1: Description of symbols which are used in experiential result.

5.1 Datasets and Experimental Setup

Under the assumption that different WMF will be learnt depending on the property of the database we want

to retrieve, we experiments with two datasets with different properties, UKbench [6] and OxfordSK []].

UKbench dataset UKBenceh dataset [[6] is composed of 2550 classes of objects or scene and total 10200 im-
ages. In other words, each class is composed of 4 images. Four images of each class that were near-duplicated
with a slight change in view point toward the object or scene as shown in the left side of Figure The retrieval
performance is measured by mAP and Top-4. Top-4 means average number of ground truth image among the first
four returned images. We sampled 300 classes and trained WMF as default, then conducted test on remaining

2250 (=2250—300) classes.

OxfordSK dataset Oxford5K dataset [8]] has a very diverse view points and illumination changes on the Oxford
buildings taken outside as shown in the right side of Figure The images are regarded as ground truth only
if they are more than 25% overlapped with the query buildings. It is composed of 5062 images in total, with
55 queries consisting 5 images per landmark (label) for 11 different landmarks. The retrieval performance is
measured by mAP. Since Oxford5K has only 11 classes, we sampled one query per class and trained WMF for

5062 images as default. We then conducted test on remaining 5051 (=5062—11) images.
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Figure 5.1: Sample images of UKbench dataset (left) and Oxford5K dataset (right). Images of each row belong to

a same class.
5.2 Key-signature: Document Frequency

In this section, we shows the experimental result of learning WMF with document frequencies. We experi-

mented with both flat codebook and hierarchical codebook.

Experiment on Flat Codebook We utilized on-line-available data to evaluate WMF with df as a key-signature
in flat codebook. We downloaded and conducted an experiment with a 100k-size codebook from Flickr60K. The
codebook was trained with the features which detected the interesting regions with Hessian-Affine extractor and
described them with SIFT [1]]. We used the same feature as the one we used to produce a codebook. For Oxford5K,
we downloaded the BoW histogram using a codebook size of 1M which is provided in this dataset website, and
used it without any transformation. Table[5.2]and Table 5.3 shows the result of the experiment with flat codebook
on UKbench and Oxford5Kd dataset respectively. When we used W M Fpolyg(-) trained with the intact data, ¢ f-
idf weighting slightly outperformed. When we used WM Fj,2(+) trained with data which ¢ f-idf weighting was
applied to, however, mAP showed improvement by 2.05% compared to no weighting and by 1.14% compared to
t f-idf weighting. This is almost twice of the improvement of ¢ f-idf weighting compared to no weighting, which
is 0.91%. Oxford5K dataset showed similar result. While ¢ f-idf weighting slightly outperformed when we used
W M Fpoy2(+) trained with the intact data, mAP showed improvement by 1.48% compared to no weighting and
by 0.79% compared to t f-idf weighting when we used W M Fj,5,2(-) trained with data which ¢ f-idf weighting
was applied to.

We found a very interesting result from Figure [5.3] [5.4 where trained WMFs are plotted. The result contra-
dicts with the conventional concept of ¢ f-idf weighting. The tendency is especially clear in the result of training
W M Fgap(-). Nevertheless, the W M Fi,p(+)s outperformed the conventional ¢ f-idf weighting, like in Table[5.2]

and Tabel [5.3] With this experiment, we verified that the assumption in text domain does not necessarily accord
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Dataset

UKbench

Key-signature

Document frequency

Weighting None | df(org) | df(Poly2) | df(LUT) | df(org)+ | df(org)+
method df(Poly2) | df(LUT)

mAP(%) 82.5 83.41 83.88 83.87 84.55 84.28
Top-4 292 297 2.99 2.99 3.03 3.01

Table 5.2: Retrieval performance on the UKbench using various weighting strategy. The key-signature type is

document frequency.

Dataset Oxford5SK
Key-signature Document frequency
Weighting None | df(org) | df(Poly2) | df(LUT) | df(org)+ | df(org)+
method df(Poly2) | df(LUT)
mAP(%) 61.64 | 61.84 62.36 62.58 62.63 62.79

Table 5.3: Retrieval performance on the Oxford5K using various weighting strategy. The key-signature type is

document frequency.

with image domain. Rather, assigning larger weight to words with larger df improves performance. By the same
means of Figure Figure visualizes only matched line with codewords having relatively large document
frequencies. As shown in the example, in image domain, codewords having large document frequencies can help
image matching in contrast with text domain. Moreover, the result accords with our prediction that the shape of
WMF will differ depending on the property of given database. Especially in the result of experiment training
WMFryr(-), the largest weight is assigned to different df's in UKbench and Oxford5K.

Table [5.4] showes retrieval performance depending on the number of training classes in UKbench dataset.
Although the rate of training class sampling changes, improvement with respect to no weighting does not change
a lot. Note that even though we learn a WMF only with a small set of training data, sampling rate lower then 1%,

we can get clear improvement compared to original ¢ f-idf weighting scheme.

Experiment on Hierarchical Codebook We conducted evaluation in each level of hierarchical codebook which
used df as a key-signature. We used SIFT [1] as a local detector and descriptor and trained hierarchical codebook
for each dataset. Here, we set the number of branch 10 and the depth 6. Table [5.3] [5.6|and Figure [5.5] [5.6] show
the retrieval performance in hierarchical codebook. WMF training after ¢ f-idf weighting outperformed ¢ f-idf

weighting in every level used in hierarchical codebook.
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Figure 5.2: Visualizations of matched codewords with high document frequencies in UKbench dataset. The red

blobs denote detectetd regions with a SIFT detector [[I]]. A yellow line denotes that the two detected regions are

matched to the same codewords.

Dataset

UKbench

Key-signature

Document frequency

Weighting method None df(org) df(org)+df(LUT)
#training | Sampling | mAP | Top-4 | mAP | AmAP | Top-4 | ATop-4 | mAP | AmAP | Top-4 | ATop-4
classes rate (%) (%) (%) (%) (%)
100 0.98 82.15 2.9 83.05 + 0.9 2.96 +0.06 | 84.18 | +2.03 3.01 +0.11
300 2.94 82.5 292 | 8341 | +091 297 +0.05 | 8428 | +1.78 3.01 + 0.09
500 4.90 82.65 2.93 83.61 | +0.96 2.98 + 0.05 84.8 +2.15 3.04 +0.11

Table 5.4: Retrieval performance on UKbench according to various sampling strategy. A means the performance

improvement with respect to no weighting. The key-signature type is df .

Dataset UKbench
Key-signature Document frequency

Method None df(org) df(Poly2) df(LUT) df(org)+df(Poly2) | df(org)+df(LUT)

level mAP | Top-4 mAP Top-4 | mAP | Top-4 | mAP | Top-4 | mAP Top-4 mAP Top-4

(%) (%) (%) (%) (%)

76.79 2.61 71.71 2.65 78.65 2.69 78.55 2.68 79.8 2.75 79.73 2.74

5 79.73 2.76 80.652 2.8 81.84 2.86 81.65 2.85 82.46 2.89 82.37 2.88

6 82.85 2.92 83.48 2.96 83.84 2.97 83.72 2.96 84.34 3.0 84.16 2.99

Table 5.5: Retrieval performance on UKbench dataset according to used level of hierarchical codebook. The

key-signature type is df .
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Figure 5.3: WMFs trained on the UKbench dataset. From top to bottom, each figure is about W M FEW( ),
W M Fpoiy2(-) and WM Fryr(-) respectively. WM Fryr(-) is interpolated by blue line for visualization. The
key-signature type is df .
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Dataset Oxford5K
Key-signature Document frequency
Method None df(org) | df(Poly2) | df(LUT) | df(org)+-df(Poly2) | df(org)+-df(LUT)
Level mAP(%) | mAP(%) | mAP(%) | mAP(%) mAP(%) mAP(%)
4 35.61 36.8 36.81 36.6 37.78 38.12
5 45.42 46.78 46.59 46.0 47.74 47.84
6 50.63 51.29 50.67 51.21 51.62 51.91

Table 5.6: Retrieval performance on Oxford5SK dataset according to used level of hierarchical codebook. The

key-signature type is df .
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Figure 5.5: Retrieval performance on UKbench dataset using various weighting strategy according to used level

of hierarchical codebook. The key-signature type is df.
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Figure 5.6: Retrieval performance on Oxford5K dataset using various weighting strategy according to used level

of hierarchical codebook. The key-signature type is df .
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5.3 Key-signature: Level of Hierarchical Codebook

We trained WMF with level of hierarchical codebook as a key-signature and conducted experimental setup
of hierarchical codebook same with Section The result in Table[5.8]and Figure shows that our method
outperforms conventional hierarchical scoring [6] which only applies ¢ f-idf weighting for each level. In case of
UKbench, the performance increases as the number of levels considered increases but decreases if only two levels
are considered. Especially, in case of Oxford dataset, the performance significantly decreases as the number of
levels considered increases. However, our method shows generally good performance as the number of levels
considered increases.

Figure [5.9] [5.10] shows WMF obtained with level as the key-signature. The larger the level is, that is, the
closer the level is to the leaf, the discriminability gets better and as a result the two datasets are both trained as an
increasing function. Note that, however, not too small levels do not have zero weights because it takes a role as
compensating the problems of sensitivity to noisy descriptors in large levels.

As shown in Table WMF with level as the key-signature also shows that improvement with respect to [6]]
does not change very much although the sampling rate of training class changes. Note that even though we learned
a WMF only with a small set of training data, sampling rate lower then 1%, we got most significant improvement

compared to the results of higher sampling rates.
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Dataset UKbench
Key-signature Level
Weighting method df(org) df(org)+level(Exp) | df(org)+level(LUT)
levels considered | mAP(%) | Top-4 | mAP(%) | Top-4 | mAP(%) Top-4
5,6 83.08 2.93 83.98 2.97 84.0 2.98
4,5,6 83.98 2.95 84.84 3.02 85.13 3.04
3,4,5,6 85.66 3.06 86.45 3.11 87.02 3.14
2,3,4,5,6 86.12 3.08 87.67 3.17 88.73 3.22
1,2,3,4,5,6 85.72 3.07 87.95 3.19 88.73 3.22

Table 5.7: Retrieval performance on UKbench using various number of levels from the leaf for hierarchical scor-

ing. The key-signature type is level.

Dataset Oxford5SK
Key-signature Level
Weighting method | df(org) | df(org)+level(Exp) | df(org)+level(LUT)
levels considered | mAP(%) mAP(%) mAP(%)
5,6 50.98 51.84 52.03
4,5,6 49.11 52.13 50.97
3,4,5,6 494 52.05 52.38
2,3,4,5,6 494 52.25 49.36
1,2,3,4,5,6 49.04 52.25 49.1

Table 5.8: Retrieval performance on Oxford5K using various number of levels from the leaf for hierarchical

scoring. The key-signature type i

s level.
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Figure 5.7: Retrieval performance on UKbench dataset using various number of levels from the leaf for hierarchi-

cal scoring. The key-signature type is level.
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Figure 5.8: Retrieval performance on Oxford5K dataset using various number of levels from the leaf for hierar-

chical scoring. The key-signature type is level.

Dataset UKbench
Key-signature Level
Weighting method df(org)+level(org) df(org)+level(LUT)
# training classes | Sampling rate (%) | mAP(%) | Top-4 | mAP(%) | AmAP(%) | Top-4 | ATop-4
100 0.98 85.65 3.06 87.84 2.19 3.17 0.11
300 2.9412 85.66 3.06 87.02 1.36 3.14 0.08
500 4.9020 86.16 3.09 88.2 2.051 3.18 0.09

Table 5.9: Retrieval performance on UKbench dataset according to various sampling strategy. A means the

performance improvement. The key-signature type is level.
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Figure 5.9: WMFs trained on the UKbench dataset. From top to bottom, each figure is about W M FEW( ),

W M Fpoiy2(-) and WM Fryr(-) respectively. WM Fryr(-) is interpolated by blue line for visualization. The
key-signature type is level.
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W M Fpoiy2(-) and WM Fryr(-) respectively. WM Fryr(-) is interpolated by blue line for visualization. The

key-signature type is level.
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5.4 Kaey-signature: Both Document Frequency and Level

For the case with both df and level as the key-signature, we set our experiment up like the experimental setup
of hierarchical codebook in Section With df as the key-signature, we trained W M F 7 in each level of the
hierarchical codebook and applied weight to the training vectors according to (4.14). Considering the weighted
data as source, we trained W M F'g,,, with level as the key-signature and obtained the final result. In Table [5.10]
and Figure we can see that there was bigger improvement generally in the performance than the
improvement only with our document frequency weighting (Section [5.2)). Especially, in the results of UKbench
dataset (Table [5.10] and Figure [5.11), the performances were improved with repect to the reults only with our

document frequency weighting on every number of levels considered.
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Dataset UKbench
Key-signature Document frequency and level
Weighting df(org)+level(org) | df(org)+df(LUT)+level(Exp)
Levels mAP Top-4 mAP Top-4
5,6 83.08 2.93 854 3.04
4,5,6 83.98 2.95 86.29 3.09
3,4,5,6 85.66 3.06 87.68 3.16
2,3,4,5,6 86.12 3.08 88.5 3.21
1,2,3,4,5,6 | 85.72 3.07 88.61 3.21

Table 5.10: Retrieval performance on UKbench and Oxford5K using various number of levels from the leaf for

hierarchical scoring. The key-signature type is document frequency and level. WM Fg,,, is for level weighting

and WM Fpyr is for document frequency weighing.

Dataset Oxford5K
Key-signature Document frequency and level
Weighting df(org)+level(org) | df(org)+df(LUT)+level(Exp)
Levels mAP(%) mAP(%)
5,6 50.98 524
4,5,6 49.11 52.45
3,4,5,6 494 51.74
2,3,4,5,6 494 52.04
1,2,3,4,5,6 49.04 51.55

Table 5.11: Retrieval performance on UKbench and Oxford5K using various number of levels from the leaf for
hierarchical scoring. The key-signature type is document frequency and level. WM Fg,,, is for level weighting

and WM Fpyr is for document frequency weighing.
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Figure 5.11: Retrieval performance on UKbench dataset using various number of levels from the leaf for hierar-
chical scoring. The key-signature type is document frequency and level. WM Fgy,, is for level weighting and

W M Fryr is for document frequency weighing.
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Figure 5.12: Retrieval performance on Oxford5K dataset using various number of levels from the leaf for hier-

archical scoring. The key-signature type is document frequency and level. WM Fgg,, is for level weighting and

W M Fryr is for document frequency weighing.
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5.5 Key-signature: Intra-Class SNSTD

We conducted an experiment to evaluate intra-class codewords weighting method with intra-class SNSTD
as a key-signature type. We experimented it only with UKbench dataset because Oxford5K dataset has too little
number of classes (11), therefore, the procedure of obtaining candidate classes does not meaningful with the
dataset. We used a hierarchical codebook [6] with depth of 6 and branch factor of 10. The intra-class codewords
weighting method was applied after the conventional ¢ f-idf weighting method [6} 2]. We randomly sampled 200
classes among the total 2550 classes to utilize it as training data to learn WMF. We used exponential function type
in Table .1] to represent WMF (W M F,,). The retrieval performance is measured by Top-z which is average
number of ground truth images among top-z images retrieved.

Figure shows the retrieval performance. As shown from the result, intra-class codewords weighting
outperforms [6] regarding every x. The result of the experiments conducted with various pre-defined number of
candidate classes is shown in Figure[5.14] In here, likewise, the method outperforms [[6] regarding every number
of candidate classes as well. However, with the bigger the number of candidate classes, the performance score
gets lower in principle because the number of subset images to be re-ranked becomes larger.

Figure [5.15] shows WMF obtained with intra-class SNSTD as the key-signature. The smaller the intra-class
SNSTD is, the discriminability gets better and as a result WMF on UKbench dataset trained as an decreasing

function.
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Figure 5.13: Retrieval performances on UKbench dataset with various number x of top retrieved images. The
performances are measured by Top-x denoting average number of ground truth images among top x images. The

key-signature type is intra-class SNSTD.
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Figure 5.14: Retrieval performances on UKbench dataset with various pre-defined number of candidate classes.

The performances are measured by Top-4. The key-signature type is intra-class SNSTD.
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Figure 5.15: A WMF (W M Fg,,(+)) trained on UKbench dataset. The key-signature type is intra-class SNSTD.
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Chapter 6. Conclusion

t f-idf weighting and hierarchical scoring, which is a commonly used codebook weighting scheme and scor-
ing method in BoW representation based image retrieval, is usually understood to improve retrieval performance
with a simple procedure. However, the degree of improvement is not too significant. For some dataset, rather, it
sometimes brings a problem of worsening precision. Not only that, because recent image retrieval system uses
very high dimensional BoW representation, it is regarded impossible to use the fact that different classes have
different key words. Only a weight or a same standard is applied to every image classes.

In this thesis, we trained a relevant global weight vector for a codebook only using the information of doc-
ument frequencies or levels of codewords without any additional cue and obtained an increased discriminability
by applying relevant weight to each codeword under the assumption of BoWs representation that codewords oc-
cur independently in one image. Moreover, we trained intra-class weight vectors for each class only using the
information of statistical codewords appearance within each class under the same assumption. Although the di-
mensionality of an image described with a very large codebook is very high, we produced a global weight vector
or intra-class weight vectors through few minutes of training and there was nearly no additional cost in applying
the weight vector in on-line phase. With the proposed method using document frequency or level, the performance
is improved compared to existing ¢ f-idf weighting and hierarchical scoring without any additional information
used. With the proposed method of weighting intra-class key words, the result shows noticeable improvement
compared to the retrieval without intra-class weighting. In the learned WMF of document frequency, especially,
we discovered an interesting fact that codewords with high document frequencies are regarded important and it
actually improves retrieval performance with large weight.

The reason why the proposed weighting scheme is meaningful is that there remains potential to increase
performance if we find another type of key-signature besides document frequency and level of hierarchical code-
book. Additional studies to find and apply other key-signatures besides the two types of key-signatures used in the
proposed method is needed. In addition to that, it is desirable to train (n + 1)-dimensional WMF for n number of
types of key-signature, rather than independently training 7 number of 2-dimensional WMFs for n types of key
signature. Furthermore, methodological analysis and thoughtful discussions are needed to understand the reason

why codewords with high document frequency are regarded important in image domain.
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Summary

Learning Codeword Characteristics for Image Retrieval Using
Very High Dimensional Bag-of-Words Representation
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